If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-8=152
We move all terms to the left:
4x^2-8-(152)=0
We add all the numbers together, and all the variables
4x^2-160=0
a = 4; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·4·(-160)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*4}=\frac{0-16\sqrt{10}}{8} =-\frac{16\sqrt{10}}{8} =-2\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*4}=\frac{0+16\sqrt{10}}{8} =\frac{16\sqrt{10}}{8} =2\sqrt{10} $
| 6x+72+19+46=180 | | -7-9v=-10v | | m+(-4)=14 | | 6-7x=20* | | -6x=-x-30 | | F(x)=20+0.75x | | 4ˆn=4ˆ2•4ˆ-2 | | 7(2x-4)-8x=-2(2x+5)+2 | | 5u=4u-4 | | 17=2b-5 | | 5x+4x=39x | | -21-p=-38 | | -(25+8c)=-2c-40 | | 4x+22-7x-5=180 | | 4x+22+7x-5=180 | | 33.4=c-7 | | 165=5x^2 | | 2(y−66)=38 | | -2k-6=2k+6 | | (4x-1)=(5x-14) | | `6x+30=42` | | 62=6g+2 | | 5(2x–3)=55 | | x+30=115 | | 6(2x−7)=−8x−32 | | 3n=33* | | 100+65+x=180 | | 2k-6=2k+6 | | 17=j/3+15 | | 2(x-1)=-27 | | 6x+72+19x+46=180 | | x^2+23x+150=0 |